The Highly Selective and Near-Quantitative Conversion of Glucose to 5-Hydroxymethylfurfural Using Ionic Liquids

نویسندگان

  • Sanan Eminov
  • Agnieszka Brandt
  • James D E T Wilton-Ely
  • Jason P Hallett
چکیده

A number of ionic liquids have been shown to be excellent solvents for lignocellulosic biomass processing, and some of these are particularly effective in the production of the versatile chemical building block 5-hydroxymethylfurfural (HMF). In this study, the production of HMF from the simple sugar glucose in ionic liquid media is discussed. Several aspects of the selective catalytic formation of HMF from glucose have been elucidated using metal halide salts in two distinct ionic liquids, 1-butyl-3-methylimidazolium chloride and 1-butyl-3-methylimidazolium hydrogen sulfate as well as mixtures of these, revealing key features for accelerating the desired reaction and suppressing byproduct formation. The choice of ionic liquid anion is revealed to be of particular importance, with low HMF yields in the case of hydrogen sulfate-based salts, which are reported to be effective for HMF production from fructose. The most successful system investigated in this study led to almost quantitative conversion of glucose to HMF (90% in only 30 minutes using 7 mol% catalyst loading at 120°C) in a system which is selective for the desired product, has low energy intensity and is environmentally benign.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Catalytic conversion of carbohydrates into 5-hydroxymethylfurfural by germanium(IV) chloride in ionic liquids.

Direct conversion of carbohydrates into 5-hydroxymethylfurfural (HMF) catalyzed by germanium(IV) chloride in ionic liquids has been investigated in search of an efficient and environmentally friendly process. Monosaccharides D-fructose and D-glucose, disaccharides sucrose and maltose, and even the polysaccharide cellulose were successfully converted into HMF with good yields under mild conditio...

متن کامل

Very efficient conversion of glucose to 5-hydroxymethylfurfural in DBU-based ionic liquids with benzenesulfonate anion

Efficient conversion of glucose to 5-hydroxymethylfurfural (HMF), an important platform molecular for fuels and chemicals, is a promising topic in green chemistry. In this work, several new DBU-based (DBU = 1,8-diazabicyclo[5.4.0]undec-7-ene) ionic liquids (ILs) with benzene sulfonate (BS) anion were synthesized and used as the solvents for the dehydration of glucose to HMF. It was found that a...

متن کامل

A two-step approach for the catalytic conversion of glucose to 2,5-dimethylfuran in ionic liquids

Lignocellulosic biomass is an attractive resource for producing transportation fuels, and consequently novel approaches are being sought for transforming the lignin and cellulosic constituents of biomass to fuels or fuel additives. Glucose, the monomer of cellulose, is a good starting material for exploring such chemistries. We report here the results of an investigation aimed at identifying ca...

متن کامل

Direct Transformation of Fructose and Glucose to 5- Hydroxymethylfurfural in Ionic Liquids under Mild Conditions

Direct dehydration of fructose and glucose to 5-hydroxymethylfurfural (5HMF) was studied using ionic liquids (ILs) without adding any catalysts. Various ILs were screened, and the highest 5-HMF yield of 95.6% was obtained using 1-butyl-3-methylimidazolium tosylate ([BMIM][TSO]) at 353 K for 30 min. Proton nuclear magnetic resonance (H NMR) spectra confirmed that the sulfonate hydrolysates of an...

متن کامل

Bis-sulfonic acid ionic liquids for the conversion of fructose to 5-hydroxymethyl-2-furfural.

Homogenous bis-sulfonic acid ionic liquids (1 mol equiv.) in DMSO (10 mol equiv.) at 100 °C efficiently mediated the conversion of D-fructose into 5-hydroxymethyl-2-furfural in 75% isolated yield, which was roughly a 10% increment compared to the case of the mono-sulfonic acid ionic liquids.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 11  شماره 

صفحات  -

تاریخ انتشار 2016